Question	Answers	Acceptable Answers	Mark
Number			
1(a)(i)	A displacement		(1)

Question Number	Answers	Acceptable Answers	Mark
1(a)(ii)	orange	Any colour or combination of colours from brown, red, orange and yellow Ignore shade of colours	(1)
		Reject other colours combined with these e.g. yellow-green	

Question	Answers	Acceptable Answers	Mark
Number			
1(b)	С		(1)

Question Number	Answer	Acceptable answers	Mark
1(c)	$(H_2 + Br_2 \rightarrow) 2HBr$	Ignore state symbols	(2)
	• correct formula for HBr (1)	Allow BrH (1)	
	• balancing of correct formulae (1)		

Question	Answer	Acceptable answers	Mark
Number			
1(d)	[24 + 2x35.5] (1) (= 95)	95 with no working	(1)
		[24 + 2x35.5] with no answer or an incorrect answer scores (1)	

Question Number	Answers	Acceptable Answers	Mark
1(e)	• relative formula mass = [23 + 19] (1) (= 42)	(19/42) x 100 (2) (= 45.2 (%)) (19/[19+23]) x 100 (2) (= 45.2 (%))	(2)
	• [(19/their relative formula mass) x100] (1) (=45.2(%)) consequential on their	45/45.2 (%) with no working (2) Ignore additional significant figures	
	relative formula mass	Allow 42 seen in working (1) Allow (19/23) x 100 = {82.6% / 83%} (1)	

Question	Answer	Acceptable answers	Mark
Number			
2 (a)(i)	C cations in a sea of electrons		(1)

Question Number	Answer	Acceptable answers	Mark
2(a)(ii)	(metals have) high melting point	a lot of energy needed to break/overcome (metallic) bonds	
		energy needed to break/overcome strong (metallic) bonds	
		Ignore references to boiling point Reject reference to intermolecular forces/covalent (bonds) /attraction between	
		ions/breaking ionic bonds/ breaking covalent bonds	(1)

Question Number	Answer	Acceptable answers	Mark
2 (a)(iii)	An explanation including two of the following points		
	 argon is inert/does not react/is unreactive (1) 	Ignore argon is in group 0/8 argon is a noble gas Ignore argon does not burn	
	 because it has 8 electrons in its outer shell (1) 	does not {gain/lose/share} electrons	
		has a full outer shell (of electrons)	
		has a stable electron configuration	
	 metals would react in/with air/oxygen (1) 	favor (matal) avida	
		form (metal) oxide	
	 argon will exclude air from welding point (1) 	prevents oxidation	(2)

Question Number	Answer	Acceptable answers	Mark
2 (b)	2 Fe + 3 Br ₂ → 2 FeBr ₃ M1 Correct symbol/formulae (1) M2 balancing of correct symbol/formulae (1)	Reject incorrect use of upper/lower case / subscripts for M1 but allow ECF for M2	(2)

Question	Answer	Acceptable answers	Mark
Number			
2 (c)	C – grey solid		
			(1)
			()

Question Number	Answer	Acceptable answers	Mark
2 (d)	A explanation including	For M1 reject reference to reactivity of halide ions eg chlorine more reactive than bromide	
	M1 order of reactivity chlorine > bromine > iodine (1)	halogens/they decrease in reactivity down the group/table	
		chlorine is most reactive and iodine is least reactive	
		Ignore reference to displacement of halide ions eg chlorine displaces bromide	
	and M2 one of the following points	Ignore "replaces"	
	 chlorine displaces bromine (from bromide) AND chlorine displaces iodine (from iodide) (1) 	chlorine reacts with bromide AND iodide chlorine takes part in two (displacement) reactions	
	bromine displaces iodine (from iodide) AND bromine does not displace chlorine (from chloride) (1)	bromine reacts with iodide AND does not react with chloride bromine takes part in one (displacement) reactions	
	iodine does not displace chlorine(from chloride) AND iodine does not displace bromine (from bromide) (1)	iodine does not react with chloride or bromide iodine does not take part in any (displacement) reactions	(2)

Question number	Answer	Mark
3(a)	Candidates relate information given to order of elements in the periodic table to predict: dark grey/black and solid/crystals	(1)

Question number	Indicative content	Mark
*3(b)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme.	
	The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.	
	AO1 (6 marks)	
	order of reactivity: chlorine > bromine > iodine	
	 The order of reactivity supported by suitable experiments from: add (aqueous) chlorine to a solution of potassium bromide the solution turns orange/yellow bromine is produced / Cl₂ + 2KBr → Br₂ + 2KCl / Cl₂ + 2Br⁻ → Br₂ + 2Cl⁻ 	
	(so) chlorine is more reactive than/displaces bromine /oxidises bromide ions	
	 add (aqueous) bromine to a solution of potassium iodide the solution turns yellow/red/ brown iodine is produced / Br₂ + 2KI → I₂ + 2KBr / Br₂ + 2I⁻ → I₂ + 2Br⁻ (so) bromine is more reactive than/displaces iodine/ oxidises iodide ions 	
	 add (aqueous) chlorine to a solution of potassium iodide the solution turns yellow/red/ brown iodine is produced / Cl₂ + 2Kl → l₂ + 2KCl / Cl₂ + 2l⁻ → l₂ + 2Cl⁻ (so) chlorine is more reactive than/displaces iodine/oxidises iodide ions 	
	Allow use of suggested reactions which do not produce a displacement reaction, e.g. add (aqueous) bromine to a solution of a potassium chloride with suitable conclusion/explanation	(6)

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1–2	 Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific ideas, enquiry, techniques and procedures lacks detail. (AO1) Presents an explanation with some structure and coherence. (AO1)
Level 2	3–4	 Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and/or developed. (AO1) Presents an explanation that has a structure, which is mostly clear, coherent and logical. (AO1)
Level 3	5–6	 Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas, enquiry, techniques and procedures is detailed and fully developed. (AO1) Presents an explanation that has a well-developed structure which is clear, coherent and logical. (AO1)

• calculates mol of Fe (1) • calculates mol of Br² (1) • determines simplest ratio/LHS of equation (1) • deduces formula of iron bromide produced/RHS of equation (1) OR • divides mass by relative atomic mass (1) • simplest ratio (1) • empirical formula (1) • deduces LHS to obtain balanced equation (1) Fe Br $\frac{5.6}{56}$: $\frac{24}{56}$ = 0.1 FeBr ₃ FeBr ₃	Question number	Answer	Additional guidance	Mark
2Fe + 3Br ₂ → 2FeBr ₃ (4)	3(c)(i)	 calculates mol of Br² (1) determines simplest ratio/LHS of equation (1) deduces formula of iron bromide produced/RHS of equation (1) OR divides mass by relative atomic mass (1) simplest ratio (1) empirical formula (1) deduces LHS to obtain balanced 	mol Fe = $\frac{5.6}{56}$ = 0.1 mol Br ₂ = $\frac{24}{(2 \times 80)}$ = 0.15 ratio Fe: Br ₂ = 2: 3/ 2Fe + 3Br ₂ 2FeBr ₃ /Fe ₂ Br ₆ Fe Br $\frac{5.6}{56}$: $\frac{24}{80}$ 0.1 : 0.3 1 : 3 FeBr ₃	(4)

Question	Answer	Mark
number		
3(c)(ii)	An explanation that combines identification – application of knowledge (1 mark) and reasoning/justification – application of understanding (1 mark): • bromine atoms are reduced (1) • because electrons are gained to form bromide ions (1)	(2)

Question Number	Answer	Acceptable answers	Mark
4 (a)	Fe CI 2.8/56 3.55/35.5 (1)	Cl ₂ Fe	
	0.05 0.1 or 1 2 (1)	FeCl ₂ with no working (3)	
	FeCl ₂ (1)	Consequential errors:	
	1 6612 (1)	if "upside down" ie 56 / 2.8 and 35.5 / 3.55 ratio 20 : 10 or 2 : 1 (1) empirical formula Fe_2CI (1)	
		allow 3 marks for 2.8 / 56 and 3.55 / 71 ratio 0.05: 0.05 or 1: 1 empirical formula FeCl ₂	
		allow 2 marks for 2.8 / 56 and 3.55 / 71 ratio 0.05: 0.05 or 1: 1 empirical formula FeCl	
		allow 2 marks for Fe Cl 2.8/56 3.55/35.5 (1) 0.5 0.1 (0) Fe ₅ Cl (1) - ECF	(3)

Question	Answer	Acceptable answers	Mark
Number 4(b)	EITHER 2x23 (1) g Na makes 2x58.5 (1) g NaCl	23.4 g with no working (3) 23.4 g from any method (3) do not accept 23(.0)	
	9.2 g Na makes (2x58.5)x9.2 g NaCl 46 (1) (= 23.4 g)	mol Na used = 9.2/23 (1) (= 0.4)	
	OR 23 g Na makes 58.5 (1) g NaCl 9.2 g Na makes (58.5)x9.2(1) g NaCl 23(1) (1) (= 23.4 g)	mol NaCl = 0.4 (1) mass NaCl = 0.4 x 58.5 (1) (= 23.4 g) Ignore units throughout unless incorrect	
	mark consequentially eg 46 (1) g Na makes (2x23+35.5) (0) g NaCl 9.2 g Na makes (2x23+35.5)x9.2 (1)	mark consequentially awarding 2 marks for 46.8 g,11.7 g and 16.3 g (see last example opposite).	
	g NaCl 46 (= 16.3 g)		(3)

uestion	Indicative Content	Mark
<u>umber</u> * 4(c)	A description, comparison and explanation including some of the following points	
	Order of reactivity: chlorine > bromine > iodine	
	Experiment	
	 add (aqueous) chlorine to a solution of potassium bromide the solution turns orange/yellow bromine is produced 	
	Conclusion/Explanation and equation:	
	(so) chlorine is more reactive than / displaces bromine	
	$Cl_2 + 2KBr \rightarrow Br_2 + 2KCI / Cl_2 + 2Br^- \rightarrow Br_2 + 2CI^-$	
	Experiment	
	 add (aqueous) bromine to a solution of potassium iodide the solution turns brown iodine is produced 	
	Conclusion/Explanation and equation:	
	(so) bromine is more reactive than / displaces iodine	
	$Br_2 + 2KI \rightarrow I_2 + 2KBr / Br_2 + 2I^- \rightarrow I_2 + 2Br^-$	
	Experiment	
	 add (aqueous) chlorine to a solution of potassium iodide the solution turns brown iodine is produced 	
	Conclusion/Explanation and equation:	
	(so) chlorine is more reactive than / displaces iodine	
	$Cl_2 + 2KI \rightarrow l_2 + 2KCI / Cl_2 + 2I^- \rightarrow l_2 + 2CI^-$	
	 Allow use of organic solvents to identify halogens 	
	 Allow use of suggested reactions which do not produce a displacement reaction eg add (aqueous) bromine to a solution of a potassium chloride with suitable conclusion/explanation 	
	 Allow use of table of suggested experiments 	
		(6

PhysicsAndMathsTutor.com

Level		No rewardable content
1	1 - 2	 a limited description of at least one experiment in which any halogen solution is added to any halide solution (not of the same halogen)
		OR describes order of reactivity as CI > Br > I
		 the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy
2	3 - 4	a simple description of at least two displacement experiments
		AND
		EITHER at least one correct explanation/conclusion
		OR
		at least one correct observation of a displacement reaction that works/balanced equation.
		 the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	5 - 6	a detailed description of at least two displacement experiments
		AND
		(a total of) at least two correct explanations/conclusions
		AND
		at least one correct observation of a displacement reaction that works/ balanced equation
		 the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors

Question Number	Answer	Acceptable answers	Mark
5(a)(i)	toxic / poisonous (gas)	Ignore other words such as harmful / dangerous / smelly / corrosive	(1)

Question Number	Answer	Acceptable answers	Mark
5(a) (ii)	A description including the following points • (damp blue) litmus (paper) (1) • (turns red then) white / bleaches (1)	Allow use of any suitable named indicator with correct result eg • (damp) universal indicator paper (1) • (turns red then) white (1) OR • (damp) starch iodide paper (1)	
		• (turns) dark blue / black (1)	(2)

Question Number	Answer	Acceptable answers	Mark
5(a)(iii)	making { poly(chloroethene / PVC / solvents / medicines / agrochemicals / disinfectants}	ignore water purification / "swimming pools"	
	bleach / sterilising water / killing bacteria	micro-organisms	(1)

Question	Answer	Acceptable answers	Mark
Number			
5(a)(iv)	2NaCl + $2H_2O \rightarrow 2NaOH + H_2$ + C_2	NaCl + $H_2O \rightarrow NaOH + \frac{1}{2} H_2 + \frac{1}{2} Cl_2$	
	correct products (1) balancing of correct formulae (1)		(2)

Question		Indicative Content	Mark
Numbe			
QWC	*5(b)	 A comparison including some of the following points Comparing volumes of hydrogen and oxygen (in each experiment) volume of hydrogen is twice volume of oxygen because water molecules contain twice as many hydrogen atoms as oxygen atoms / is H₂O overall 2H₂O → 2H₂ + O₂ 	
		 Relating volumes of gases to current and time (from experiments 1 and 2) time doubles (from experiments 1 and 2) volumes of gases double Volumes of gases are directly proportional to the time for electrolysis / passage of current (from experiments 1 and 3) as current x 1.5 (from experiments 1 and 3) volumes of gases x 1.5 volumes of gases are directly proportional to the current 	(6)
Level	0	No rewardable content	
1	1 - 2	 a limited description of one trend e.g. increased time gives an increased gas volume the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy 	
2	3 - 4	 a simple description e.g. if the time is doubled, the volume of gas is doubled and if the current is increased the volume of gas increases the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy 	
3	5 - 6	 a detailed description e.g. volume of hydrogen is twice volume of oxygen and as time doubles, volume of gas doubles or as current x 1.5, volume of gas x 1.5 the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors 	